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1 Getting started

This tutorial is written to give the new user the tools necessary to start running simulations
as quickly as possible using GROMACS (GROningen MAchine for Chemical Simulations).
Gromacs changed considerably between versions 4 and 5; this tutorial is written for version
5. It makes no attempt to enumerate all features of the package, which are well-documented
in the user manual. Throughout this guide, text written in this font are commands and
keywords written verbatim.

1.1 Installation

All necessary tools are already installed on the Penn State computing clusters (https:
//ics.psu.edu/advanced-cyberinfrastructure/). You can log into one of the clusters
through a UNIX terminal, such as Terminal, iTerm (downloadable), X11/XQuartz, or Exceed
OnDemand.

ssh -X your-username@hostname

There are two families of clusters in use at the time of this writing. The old clusters, soon
to be retired, are the Lion-X series and Hammer; the new clusters are ACI-b and ACI-i.

The Lion-X and ACI-b clusters are for running “batch” jobs (jobs which are submitted
and run as computing time becomes available). Hammer and ACI-i are for running inter-
active jobs, and for testing and debugging. More information is provided on running batch
jobs in a later section. The Milner research group has multiple queues on ACI-b, discussed

Cluster hostname Types of jobs
Hammer hammer.rcc.psu.edu Interactive
Lion-XG lionxg.rcc.psu.edu Batch (lionxg-milner)
Lion-XV lionxv.rcc.psu.edu Batch (lionxv-milner)
ACI-i aci-i.aci.ics.psu.edu Interactive
ACI-b aci-b.aci.ics.psu.edu Batch

below.
Gromacs 4 is installed by ICS for all users on Lion-X, Gromacs 5 on ACI. The Milner

group has installed Gromacs 5 locally on Lion-X, and Gromacs 4 on ACI, to aid in transi-
tioning existing projects from the old clusters to the new. This tutorial, however, assumes
you are running Gromacs 5 on ACI.

Gromacs comes in several “flavors”. First, calculations can be done either in single
precision (recommended for most purposes) or double precision (only necessary for precise
energy calculations). Second, calculations can be speeded up by using multiple processors,
which either reside exclusively on a single node in the cluster (using “thread-MPI”), or are
distributed across multiple nodes (using “MPI”). The difference between thread-MPI and
MPI is discussed further below; in short, thread-MPI is for small tasks, and MPI for big
simulations with many atoms.

All the many programs within Gromacs are accessed from just one executable, generically
called gmx. On ACI, gmx is present in two versions: gmx_d, which is double precision and
uses thread-MPI, and gmx_mpi, which is single precision and uses MPI.
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Logging into ACI

The ACI cluster has two “faces”: ACI-i (interactive) and ACI-b (batch). ACI-i is for setting
up jobs, debugging, editing scripts, analyzing data interactively, and generally for using any
program that is “visual”, i.e., opens windows to display things. ACI-b is for submitting and
running batch jobs — big calculations that use multiple compute cores and take a long time
to run.

ACI-i and ACI-b share a common filesystem, but not all the same software is available on
both. In particular, the easy-to-use windows-based editor gedit is only on ACI-i, and you
can only submit batch jobs from ACI-b. Also, other visual programs such as Mathematica
and vmd do not work reliably on ACI-b (sometimes the expected window fails to open, with
an error like Can’t open display:).

So the recommended procedure is: if you will need any visual program, log onto ACI-i
using Exceed OnDemand (https://downloads.its.psu.edu) OS X users, need XQuartz
2.7.8 installed (https://www.xquartz.org) to use Exceed OnDemand.

To login with Exceed, after launching the program, fill in the machine address (aci-
i.aci.ics.psu.edu), your username and password, then click “Login”;. You will be prompted
for a 2FA (two-factor authentication) option. Recommended is “Duo Push”, which must be
installed on your smartphone. To set up 2FA, see
https://ics.psu.edu/advanced-cyberinfrastructure/accounts/.

Then choose “Xconfig: Default Xconfig” and “Xstart: Terminal.xs” and click “Run”,
which will (finally) give you a terminal window, logged into ACI-i. You can launch other si-
multaneous ACI-i sessions as “tabs” on the terminal window, by selecting “File / Open Tab”.
To connect to ACI-b, from such a session, type ssh <username>@aci-b.aci.ics.psu.edu;
you will be prompted for your password and 2FA. Now you’re logged onto ACI-b, and can
submit batch jobs (see below).

Getting access to Gromacs

Gromacs is installed on ACI, but not available to you by default. To get access to it, you
need to load it with the following commands:

module load gcc/5.3.1

module load openmpi/1.10.1

module load gromacs/5.1.4

Each time you log in, these commands must be executed for you to use Gromacs. The
easy way to do that is to add these lines to your .bashrc file, located in your home directory.
.bashrc is a script that executes each time you log in. (After you first make the change,
run source .bashrc, which executes the script.)

As of this writing, these commands give error messages, but apparently still work. You
can verify that you have access to Gromacs using the which command, as in

[stm9@aci-lgn-006 ~]$ which gmx_d

/opt/aci/sw/gromacs/5.1.4_gcc-5.3.1_openmpi-1.10.1/bin/gmx_d
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and similarly for gmx_mpi and mpirun. (which searches for executables on your “search
path”.) You can verify that the commands are working, with gmx_d --version (which
prints information about the version installed) or gmx_d -h (which prints help on how to
use the command).

Making local Gromacs library

We will now create a local copy of the Gromacs “topology” folder top in our work directory.
This will allow us to make an important modification later — adding new monomers to the
predefined list of predefined amino acids, which helps us build topology files for synthetic
polymers.

cp -r /opt/aci/sw/gromacs/5.1.4_gcc-5.3.1_openmpi-1.10.1/share/gromacs/top ~/work/top

Then, add the following line to .bashrc

export GMXLIB=~/work/top

and source .bashrc again. Finally, enter echo $GMXLIB, and check that the output matches
the location of your new local copy of top.

1.2 Other useful modules

A complete list of software on ACI is available at
https://ics.psu.edu/advanced-cyberinfrastructure/support/software/.
module spider lists all modules available to load; module spider <package> searches for
a specific software package. For some packages, module spider specifies other packages
that must be loaded first. This can be recursive: gromacs/5.1.4 requires gcc/5.3.1 and
openmpi/1.10.1 to be loaded first. When you use module spider to find out how to load
those, you find that openmpi/1.10.1 requires gcc/5.3.1 or pgi/16.4 to be loaded first. In
short, modules can be loaded with one or more module load <package> commands, which
can be added to ~/.bashrc to load every time you log in.

1. Python. A high order scripting language, useful for processing and analyzing large text
files. Multiple versions are available, so it is recommended to choose which one you
will support. Recommended are either version 2.6.5 or version 3.1.1 (the newest as of
the writing of this tutorial).
module load python/<version>

2. Mathematica. Interactive or batch Mathematica, useful for calculations which would
take a long time to run on your personal computer. Mathematica is a “windows
application”, i.e., it opens windows that display things. Such packages run reliably
only on ACI-i, and only under Exceed OnDemand (see above).
module load mathematica/<version>

3. VMD: Visual Molecular Dynamics. Useful for visualizing configurations and simula-
tion results. This package is also a windows application. As of this writing, vmd is not
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installed on ACI, except as a local install in Milner group storage. To use it, add these
lines to your .bashrc file (the first line is a comment):

# add path to local vmd

export PATH=$PATH:/gpfs/group/stm9/default/SOFTWARES/vmd-1.9.2/build/bin

1.3 Run a simple simulation

You will need to upload a copy of decane_min to the cluster that you are logged into. One
way to do this is from the UNIX terminal using scp (Secure CoPy), Examples of using scp

can be found at https://www.tecmint.com/scp-commands-examples/. A more convenient
way to upload files is to use the software Cyberduck (http://cyberduck.ch). If you use
a Mac, you should also download TextWrangler (available for free in the Mac App Store),
a easy-to-use and powerful text editor designed for programmers. Cyberduck can be used
together with TextWrangler to edit cluster files, by automatically downloading a copy to
edit on your laptop/desktop, then automatically uploading it again when you save. After
you have installed both, open Cyberduck, and go to Preferences > Editor. Here you can
choose TextWrangler as your default program for opening files (recommended).

Then, click Open Connection to open a connection to the cluster. Choose SFTP from
the drop down menu. Enter the hostname under Server, and your PSU username under
Username (you do not need to enter your password now). Click Connect. Enter your
password when prompted. Upon successful connection, click the Action menu, and choose
New Bookmark from the bottom of the menu. This will save this connection for easy access
next time. Change the Nickname to ACI-i (or whatever cluster you logged into). Next time
you open Cyberduck, you can double click on this bookmark to log in.

To upload files, simply drag them from your local system onto the Cyberduck window.
To download files, double click on them in the Cyberduck window, or drag them to your
local system.

Decane minimization

Copy decane_min from the tutorial folder to your work folder. We will run a simple energy
minimization of a single molecule of decane. There are four files in this folder: a configuration
(decane.pdb), a topology (decane.top), a set of run parameters for minimization (em.mdp),
and a script to run the simulation (min). We will skip using the script for now.

Open decane.pdb. This is a configuration file for decane made of “ethylene” monomers.
It tells Gromacs where all the atoms are initially, and labels each of them.

Open em.mdp. The first section tells Gromacs to run an energy minimization with the
steep algorithm. The second section tells it how much to minimize. The rest of the file
defines parameters for the potentials.

We need to “preprocess” the simulation parameters for Gromacs. We do this using the
command grompp (GROMacs PreProcessor). Enter the following command:

gmx_d grompp -f em.mdp -c decane.pdb -p decane.top -o em.tpr
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You should see Gromacs output telling you that you have successfully preprocessed the simu-
lation. Now, we can feed em.tpr to mdrun, which will actually run the energy minimization.

gmx_d mdrun -s em.tpr -deffnm decane_min -c decane_min.pdb

The minimization should take a second or two to run. To test the output, you can use vmd

to view the final structure:

vmd decane_min.pdb

It is convenient to combine multiple Gromacs commands into a single script file so that you
do not need to retype long commands each time. The script min is provided to you as an
example of this. To execute it, enter ./min
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2 Anatomy of a simulation

Now that we have run a simulation, let’s look at the different parts of the simulation, which
are common to almost all Gromacs simulations. In general, a simulation consists of:

1. Define the atoms and monomers (residues) in your molecules. Atom types are taken
from a force field.

2. Build polymers from these residues. Generate a starting trajectory of molecules,
where you list all of the atom positions (and velocities). Generate a topology for
the molecules, which lists all atoms, bonds, angles, and dihedrals.

3. Set simulation parameters. Set the simulation box size. Pre-process the simulation
parameters, starting trajectory, and topology.

4. Run the simulation, and output trajectories and other useful statistics.

5. Analyze the data using Gromacs or your own tools in Mathematica or Python.

In our simple example, we were given a configuration (Step 1) and topology (Step 2). The
run parameters were set in Step 3 in em.mdp, and the simulation box size was also given in
the configuration file. grompp does the preprocessing, and mdrun runs the simulation (Step
4). We checked our results using VMD (Step 5).

2.1 Force field

In MD simulation, Newton’s equations of motion are solved on many atoms. The forces on
each atom are computed according to a force field. The force field can be decomposed into
two types of interactions: bonded and non-bonded. Bonded interactions are the forces that
arise due to bonds within a single molecule. For example, a bond between two atoms will
have a preferred bond length bij. The potential around this length can be approximated as
harmonic for many applications, that is

U =
1

2
kbij(rij − bij)

2 (1)

where rij is the actual length between the atoms, and bij is the preferred bond length. The
force can then be computed from F = −∂U/∂r. The main bonded interactions are: bonds,
angles, and dihedrals.

The non-bonded interactions include things like dispersion forces and electrostatic in-
teractions. These forces are both intramolecular (within the molecule) and intermolecular
(between molecules). An “exclusion” is usually applied to the intramolecular dispersion
forces for those atoms that are connected within a dihedral (usually called “1-4 exclusions”).
The dispersion forces use the Lennard-Jones potential

U = 4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)
(2)
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and the electrostatic potential is given by the Coulomb potential

U =
1

4πε0

qiqj
εrij

(3)

Different force fields have different parameters for these potentials. The parameters are
applied by using the labels for each atom type given in the force field files. A common force
field to use is the OPLS-AA (Optimized Parameters for Liquid Simulation-All Atom). The
various force fields and parameters may be found in the top folder that you copied.

2.2 Simulation units

Gromacs employs the following fundamental and derived units:

quantity unit
length nm
mass amu
time ps
temperature K
charge e (fundamental charge ≈ 1.6 × 10−19 C)

energy kJ/mol
force kJ/mol-nm
pressure kJ/mol-nm3

velocity nm/ps

More details about units and nomenclature can be found in the Chapter 2.2 of the Gromacs
manual.

2.3 Types of files

You may have noticed that many files were generated when you ran the decane minimization.
Here are a few important Gromacs files that you may encounter (note: not all of these were
generated during the minimization).

1. .gro GROmacs configuration file. Positions are given in nm, and velocities in nm/ps.

2. .pdb Protein Data Bank configuration file. Used by biochemists. Fixed column posi-
tions. Useful for pdb2gmx (see below).

3. .rtp Residue ToPology File. Originally for amino acids and DNA building blocks;
we use this for building polymer chains. Contains information about atom types and
connectivity in a residue or monomer.

4. .top TOPology file. Tells how atoms in a molecule or system are connected. This file
is complicated to build “by hand” for all but small molecules; special tools exist to
help. See below.
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5. .ndx iNDeX file. Lists atoms that are in certain named groups. Useful for controlling
behavior of groups (e.g., freezing their positions), or getting data about a subset of the
system. Format is [ group ] followed by rows of atom numbers in that group.

6. .mdp MD Parameter file. Tells Gromacs what it needs to know about the simulation
during pre-processing.

7. .tpr ToPology Run file. Binary. Output of simulation pre-processing, input to mdrun

to run the simulation.

8. .trr TRajectory Run file. Binary. Output of an MD simulation, includes “snapshots”
of the system at different times, which could be turned into a “movie”.

9. .log LOG file. Output by mdrun. Can be used to diagnose problems.

10. .edr Energy Data Run file. Binary. Contains run data such as energy, pressure, etc.
Can be analyzed with Gromacs tools.

2.4 Configuration file

Configurations can be downloaded (http://www.rcsb.org/pdb/home/home.do), generated
by you (in Mathematica, for example), or drawn in software like Avogadro. Avogadro
(http://avogadro.cc) is useful for drawing and visualizing molecules on your desktop /
laptop.

.gro

First line is a descriptor, second line is number of atoms, each following line is an atom.
These columns correspond to: residue number (5), residue name (5), atom name (5), atom
number (5), position x, y, z (8, 3 decimals, in nm), velocity x, y, z (8, 4 decimals in nm/ps).
The corresponding C format code is

%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f

The last line of the file gives the simulation box lengths (in nm).

.pdb

Details can be found online (http://deposit.rcsb.org/adit/docs/pdb_atom_format.
html). Necessary lines are CRYST1 (which sets the simulation box size), MODEL (starts
main part of file), ATOM (which has the necessary atom information), TER (which ends
each chain), ENDMDL (which ends the model), and END (which ends the file).

10

http://www.rcsb.org/pdb/home/home.do
http://avogadro.cc
http://deposit.rcsb.org/adit/docs/pdb_atom_format.html
http://deposit.rcsb.org/adit/docs/pdb_atom_format.html


2.5 Parameter file

The .mdp file tells Gromacs the details of the simulation that you will run. Every file needs a
section of basic run parameters, which choose an “integrator”, set the number of simulation
steps, the step size, the use of constraints, etc.

An important part of the parameter file is the specification of a “cutoff scheme”, i.e.,
how the long-range nonbonded Lennard-Jones (van der Waals) and electrostatic (Coulomb)
interactions will be cut off and neglected beyond some distance.

For choosing van der Waals cutoffs, bear in mind that the typical values of σ range up
to 3.5–4Å, with ε values smaller than 1.0 kJ/mol (=120K), so that at a separation of of
2.5σ, the force derived from the potential 4ε(r/σ/)6 is down by a factor of 2.57 = 0.0016.
This suggests a cutoff length of 2.5 × 4Å or about 10Å. Of course, there are still residual
contributions to the attractive energy and pressure, but these can be computed with tail
corrections.

New cutoff scheme.

Since Gromacs 4.6, a simpler and more efficient Verlet cutoff scheme has been available. (See
http://manual.gromacs.org/online/mdp_opt.html#nl). This scheme works with PME
(particle mesh Ewald) electrostatics, which does not require zero-sum charge groups to be
defined (charge groups were a holdover from cutoff electrostatics). GPU acceleration in
Gromacs requires the Verlet scheme, and for CPUs with special instruction sets such as SSE
and AVX.

The Verlet scheme has an explicit, exact cut-off at rvdw=rcoulomb, at which both
Lennard-Jones and Coulomb interactions are shifted to zero by default. Currently only
cut-off, reaction-field, PME electrostatics and plain LJ are supported. Some mdrun function-
ality is not yet supported with the Verlet scheme, but grompp checks for this. With GPU-
accelerated PME or with separate PME ranks, mdrun automatically tunes the CPU/GPU
load balance by scaling rcoulomb and the grid spacing.

Here is a set of sample parameters.

; cutoff-related parameters

cutoff-scheme = verlet

; rebuild neighbor list every 20 steps

nstlist = 20

; build neighbor list from cell list (default)

ns_type = grid

; periodic boundary conditions in x,y,z

pbc = xyz

; Electrostatics

; "particle mesh Ewald" -- efficient Coulomb interactions

coulombtype = PME

; crossover distance from "real space" to "Fourier space"

rcoulomb = 1.2

; van der Waals

; make potential zero at cutoff
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vdw-modifier = Potential-shift-Verlet

Old cutoff scheme.

Prior to Gromacs 4.6, the cutoff scheme was more complicated. For van der Waals interac-
tions, the choices were cutoff (abrupt cutoff — not recommended), shift (shift potential
to zero beyond cutoff), and switch. For cutoff and shift, the cutoff length is rvdw. For
switch, the interaction is turned off smoothly from rvdw_switch to rvdw.

For Coulomb interactions, cutoff schemes cutoff, shift, and switch can also be spec-
ified; in addition, there is PME (particle mesh Ewald). With PME, the interpretation of
rcoulomb is not a cutoff per se, but the crossover between treatment of Coulomb inter-
actions in real space and Fourier space.

The length rlist is the range of the neighbor lists maintained for each atom; neighbor
lists are updated every nstlist steps (typically 10fs or so, hence 5-10 steps). If particle
mesh Ewald (PME) electrostatics are used, we must take rcoulomb equal to rlist.

If we use either switch or shift for the van der Waals interactions, Gromacs requires
us to have rvdw less than rlist, by an length equal to the size of the largest charge groups.

So if we use PME, hence rcoulomb equal to rlist, and cutoff van der Waals, then we
can take rvdw larger than rcoulomb. In this case, forces from particles beyond rlist up
to rvdw are only updated every nstlist steps. This is a “twin-range” cutoff, and can be
applied to any simple cutoff interaction.

If instead we use PME and switch or shift van der Waals, Gromacs requires us to have
rvdw_switch ¡ rvdw ¡ rcoulomb = rlist, with a width between rvdw and rlist of the size
of the largest charge groups.

This is a complicated set of conditions to satisfy. A set of sample choices are:

vdw-type = switch

rvdw_switch = 0.8

rvdw = 1.0

coulombtype = pme

rcoulomb = 1.3

rlist = 1.3

For very small systems, with linear dimension 20Åor so, it is hard to wedge in all these
lengths, so the simplest cutoff scheme is something like:

vdw-type = cutoff

coulombtype = pme

rlist = 1.0

rvdw = 1.0

rcoulomb = 1.0

which is not very accurate but at least can run.
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2.6 Topology file

The topology file contains all the information about the types of atoms present in a simu-
lation, how they are bonded together, what intramolecular bonded interactions are present
and what their potentials are, what are the interaction potentials between nonbonded atoms.

Topology files are typically built and best understood “from the top down”. The .top
file for the entire simulation can be quite short, as it can consist entirely of references to .itp
(Input ToPology) files for the molecules and forcefield used in the simulation

A typical example is (see Gromacs manual 5.7.2)

#include oplsaa.ff/forcefield.itp

#include molecule1.itp

#include molecule2.itp

[system]

My System

[molecules]

; name count

molecule1 1000

molecule2 2000

The #include declaration reads the contents of the named file at that point in the .top file.
Here oplsaa.ff/forcefield.itp is the topmost .itp file of the forcefield to be used (OPLS-
AA); molecule1.itp and molecule2.itp are the .itp files of the two molecules present in
the simulation. The remaining declarations are simply the name of the system, and the
number of each type of molecules.

Molecule .itp file

Typically, each kind of molecule has its own .itp file (this keeps things neat). These can be
created by hand (tedious for larger molecules), generated with web-based tools (but should be
checked manually for reasonableness), or obtained using pdb2gmx (for molecules represented
as chains of “residues”, see below).

The typical structure of a molecule .itp file is (see Gromacs manual 5.7.2):

[moleculetype]

; name nrexcl

...

[atoms]

; # type res# residue atom cg# charge mass

...

[bonds]

; i j func b0 kb

...
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[angles]

; i j k func th0 cth

...

[dihedrals]

...

[position_restraints]

; i func fc

...

The [moleculetype] declaration gives the molecule name, and the “number of exclusions” —
how many bonded neighbors away are excluded from non-bonded interactions (typically 3
if dihedral potentials are present), so that bonded interactions are not “interfered with” by
non-bonded contributions.

Next comes [atoms], which lists all the atoms present in the molecule, with their number,
“atom type”, residue number and name, atom name, charge group number, and charge. If
the charge is not present, the default value from the potential is used. The “atom type”
should match one of the types in the atomtypes.itp file of the potential you are using, unless
you are defining custom atom types. This file gives “hints” as to the structural meaning of
the different atom types the potential contains.

Next comes [bonds], which lists all the pairs of bonded atoms (by number), the bonded
function type (1 is harmonic spring), rest length b0 and spring constant kb. Then [angles],
similarly listing all the sets of three successive bonded atoms by number on which angular
potentials are acting, with the function type (1 is harmonic spring), minimum energy angle
th0 and spring constant cth. Then comes [dihedrals], which lists all sets of four successive
bonded atoms, in similar fashion. There are two types of dihedral functions, each with its
own parameters (see Gromacs manual for details).

Note: bond angles are defined as between the first and last atom through the middle
atom. The preferred C-C-C angle is around 112◦. Dihedral angles are defined as the angle
that the first and last atom form over the bond. In butane, the C-C-C-C dihedral angle is
180◦ in the trans configuration.

If only atom numbers are given for entries in [bonds], [angles], or [dihedrals], the corre-
sponding potential defaults to values specified in the potential (in the file ffbonded.itp).
This means building a molecule .itp file by hand is manageable if tedious (the number of
entries in the [angle] and [dihedral] table get quite large).

The nonbonded (Lennard-Jones) interaction parameters for all the atoms in a molecule
are set by default from the atomtype, by referring to the file ffnonbonded.itp for the chosen
potential (e.g., OPLS-AA).

Force field .itp file

The file forcefield.itp for a given potential is likewise defined “top down”. The file itself
is very short, containing only a single definition and some #include statements:
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[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 3 yes 0.5 0.5

#include "ffnonbonded.itp"

#include "ffbonded.itp"

#include "gbsa.itp"

The [defaults] declaration makes choices about the non-bonded potential function (type 1 =
LJ, type 2 = Buckingham), and the “combining rule” for determining nonbonded parameters
for different atomtypes interacting. (For details on combining rule, see Gromacs manual
5.3.2; comb-rule 3 is the “sigma-epsilon” system.) The two main #include files contain the
nonbonded and bonded declarations, previously mentioned above.

In turn, the file ffnonbonded.itp (see Gromacs manual 5.2.1) simply contains a list of
[atomtypes] declarations:

[atomtypes]

; name bondtype mass charge ptype epsilon sigma

...

Here “name” is the atomtype name (from atomtypes.atp); “bondtype” is a more gen-
eral name, that declares how the atom’s bonded potentials are set by entries in the file
ffbonded.itp; “ptype” is the particle type (A = atom); the last two parameters are the LJ
parameters (their interpretation depending on the default form of the nonbonded potential,
set by nbfunc in forcefield.itp).

Likewise, the file ffbonded.itp (Gromacs manual 5.3.3) specifies the parameters for the
bonded interactions between atoms of different “bondtypes” (specified in ffnonbonded.itp):

[bondtypes]

; i j func b0 kb

...

[angletypes]

; i j k func th0 cth

...

[dihedraltypes]

...

2.7 Modifying the potential

For the most part, we let Gromacs set the potential parameters, after we have chosen the
atom types that best match the atoms in our molecules (by scanning through atomtypes.atp

for mentions of corresponding moieties). Occasionally, we want to override the default values
for some interaction, supply missing bonded potentials, or create new atom types for new
situations, possibly by modifying existing types.
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To modify or extend the potential, we insert declarations after the #include forcefield.itp

declaration in our .top file, or inside the various molecule.itp files. First, the charge of spe-
cific atoms in a molecule, or any bonded interactions between specific atoms in the molecule,
can be overridden by explicit declarations in molecule.itp.

To override the nonbonded LJ interactions requires a different approach. We can override
the LJ parameters for a given atomtype, with declaration lines like those in ffnonbonded.itp,
inserted immediately after this file is included.

We can also override the nonbonded interactions between specific atomtypes, i.e., over-
riding the “combination rules” used by default to set those interactions, with declarations
like this (see Gromacs manual 5.3.2):

[nonbond_params]

; i j func epsilon sigma

...

Sometimes we want to create an entirely new atomtype, to correspond to a moiety
not included in the extensive OPLS atomtypes.atp file, or to correspond to some ficti-
tious “model atom” type. We can do this by adding [atomtype] declarations like those in
ffnonbonded.itp, immediately after this file is included. If this declaration uses an ex-
isting bondtype, then bonded interactions involving the new atomtype will be set by the
declarations in ffbonded.itp.

If instead the new atomtype is given a new bondtype, declarations like those in ffbonded.itp

can be added immediately after it is included to specify the necessary new bonded interac-
tions. This is tricky, however, because there can be very many combinations of bondtypes
to include in specifying angle and dihedral potentials.

Tabulated potentials

Sometimes it is useful to have complete control of the form of the nonbonded interactions,
beyond the predefined options available within Gromacs. For this purpose, Gromacs offers
the use of tabulated potentials (Gromacs manual 6.7.2). These are accessed from the .mdp
file.

The nonbonded potential takes the general form

U(r) = qiqj/(4πε0)f(r) + C6g(r) + C12h(r) (4)

For nbfunc equal to 1 (LJ), the default choices for the functions f(r), g(r), and h(r) are
f(r) = 1/r, g(r) = −1/r6 and h(r) = 1/r12.

The values of C6 and C12 are determined from [atomtype] entries, which may either give
C6 and C12 explicitly, or implicitly through values for σ and ε, depending on the combination
rule chosen in the [defaults] section at the start of the .top file.

With comb-rule = 2 or 3, the nonbonded parameters input are σ and ε, and C6 and C12

are computed from C6 = 4εσ6 and C12 = 4εσ12. With comb-rule = 1, C6 and C12 are entered
directly. (Comb-rule = 2 specifies Berthelot combination rule; 1 or 3 specifies harmonic
mean mixing for C6 and C12.)
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In the simplest case, keyword vdw-type=user signals the replacement of g(r) and h(r)
(and coulombtype=user the replacement of f(r)) by tabulated potentials for nonbonded
interactions between all particles.

These tabulated potentials are provided by the user in a file table.xvg, in which each
line contains values for r, f,−f ′, g,−g′, h,−h′ (separated by tabs or spaces). The r values
must be equally spaced (recommended spacing 0.002 nm), up to the cutoff radius plus 1nm.

Sometimes, we want to specify tabulated interactions only for certain types of particles,
or perhaps different tabulated interactions for different combinations of particles. This can
be accomplished using energy groups: in the .mdp file, include

energygryps = xx, yy ...

energygrp_table = xx xx xx yy ...

where xx and yy are different groups (possibly defined using make_ndx). With this dec-
laration, Gromacs uses tabulated potentials table_xx_xx.xvg for the xx-xx interactions,
table_xx_yy.xvg for the xx-yy interactions, and so forth for each successive pair of energy
groups listed after energygrp_table.

Note: with tabulated interactions, the cutoff scheme must be cutoff-scheme = Group

(the new Verlet cutoff scheme is not yet compatible with tabulated interactions).
See http://www.gromacs.org/Documentation/How-tos/Tabulated_Potentials
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3 Simulation: lysozyme in water

Here we will simulate a lysozyme solvated in water using Gromacs. This example was
developed by Justin Lemkul; his website (http://www.bevanlab.biochem.vt.edu/Pages/
Personal/justin/gmx-tutorials/) is an excellent resource for Gromacs help. Here we will
present the basic steps to run this simulation; the reader is referred to the original tutorial
for more details and explanation.

3.1 System generation

In this example, we are given a PDB file for the protein (1AKI.pdb), which serves as an
initial configuration file. If this were not supplied, you would somehow need to generate a
valid starting configuration (see decane example in the next section).

Topology

We must make a topology file for the protein, and also create a processed .gro coordinate
file. This is accomplished using pdb2gmx (“PDB to Gromacs”), and the OPLS-AA force
field. OPLS-AA has a a residue topology file for amino acids, which tells pdb2gmx how to
build the topology file. We will solvate the system with SPC/E water.

gmx_d pdb2gmx -f 1AKI.pdb -o 1AKI_processed.gro

When prompted, type 15 to choose the OPLS-AA force field, and then type 7 to choose
SPC/E water for the solvent.

Simulation box

Now we use editconf to change the system size. Our system will have periodic boundaries,
so it needs to be big enough that the protein doesn’t “see” itself in the box. To do this, we
place the protein in a cubic box with -bt cubic, center it with -c and pad it with 1.0 nm
on each side with -d 1.0. That the nearest image of the protein is then 2.0 nm away, which
is far enough that it won’t interact with itself.

gmx_d editconf -f 1AKI_processed.gro -o 1AKI_newbox.gro -c -d 1.0 -bt cubic

Solvation

Now we can solvate the protein in water using solvate. We tell solvate our protein
configuration with option -cp, and the solvent we want to use with -cs, which is spc216.gro
for SPC, SPC/E, and TIP3P water. We also need to output a new topology file, which we
can do when solvating with water only using -p

gmx_d solvate -cp 1AKI_newbox.gro -cs spc216.gro -o 1AKI_solv.gro -p topol.top

This overwrites the existing topology file, and backs up the old one by adding ## around it.
Gromacs does this automatically for all files that are overwritten. If you inspect the new
topol.top, you will see a line has been ended at the end for the new water molecules. You
can also see their configurations. added to the end of the new .gro file.
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Add anions

Now we use genion to add anions to neutralize the system, since lysozyme has a net positive
charge (+8). genion requires a .tpr file as input. So we create one with grompp first, using
a dummy .mdp called ions.mdp, which has parameters for a simple energy minimization.

gmx_d grompp -f ions.mdp -c 1AKI_solv.gro -p topol.top -o ions.tpr

Now we can use genion to add ions to the solvent. Options -pname and -nname are the
names for the ions we will use (sodium and chloride). We use -nn 8 to add 8 anions, since
the protein has a net charge of +8 (which grompp reported in its output)

gmx_d genion -s ions.tpr -o 1AKI_solv_ions.gro -p topol.top -pname NA -nname CL -nn 8

Type 13 to choose to declare the ions part of the solvent group.
If you inspect the new .gro and topology files, you will see 8 solvent molecules have been

replaced with 8 chloride ions. Our system is now ready for simulation.

3.2 Energy minimization

Before running any MD simulation, we run a brief energy minimization. This ensures that
there are no large interatomic forces in the starting configuration, which would cause the
system to “blow up” if you started running MD immediately. We run grompp to prepare
for energy minimization. In the MD parameter file minim.mdp, we choose the steepest-
descent minimizer (since it is the fastest), and a reasonably large force tolerance of 1000
kJ/mol/nm, enough to ensure there are no serious problems with our starting configuration.
Other parameters are described in the Gromacs manual.

gmx_d grompp -f minim.mdp -c 1AKI_solv_ions.gro -p topol.top -o em.tpr

After processing, we can pass em.tpr to the MD engine, and run our minimization. The
option -deffnm (DEFine File NaMe) sets a default file name for all inputs and outputs, so
that we don’t have to specify each file individually. Option -v (Verbose) causes mdrun to
print what is happening at each step (not recommended for ordinary use).

gmx_d mdrun -v -deffnm em

3.3 NVT equilibration

After minimization, the next step is to equilibrate the solvent (water) and solute (protein).
We want the system to come to the right temperature and pressure before we begin complete
simulation. First, we equilibrate the temperature with an NVT simulation (constant Number
of atoms, Volume, and Temperature). In this step, we restrain the heavy atoms in the protein,
so that the water can equilibrate around it without disturbing the delicate protein folded
structure. Details can be found in nvt.mdp.

Again, we grompp the run parameters.

gmx_d grompp -f nvt.mdp -c em.gro -p topol.top -o nvt.tpr
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Because of the system size (over 30,000 atoms), it will take a significant amount of computing
power to run this NVT simulation, so we submit it to the cluster queue rather than running it
interactively. To run faster, we will parallelize the job with MPI; basically, we will distribute
the computer’s work over four separate compute cores.

The code to submit this job on ACI-b is provided in the “batch script” nvt.pbs. To
submit the job, log into ACI-b (see above) and enter:

qsub nvt.pbs

To check the status of your jobs (again, only from ACI-b), enter

qstat -u your-username

It should take about 12 minutes for your job to run once it has started. Details of this .pbs
(Portable Batch System) script will be discussed later.

Once the simulation has finished, we want to check that we have correctly equilibrated the
temperature. Use energy to extract the variation with time of important system quantities
from the .edr file:

gmx_d energy -f nvt.edr -o temp.xvg

and enter 15 0 to select only the temperature to be extracted.
The resulting file temp.xvg can be opened using Grace (from ACI-i, type xmgrace temp.xvg)

or using the enclosed Mathematica notebook (xvg_reader.nb). Plot the temperature versus
time, and you should see it stabilize around 300 K (Figure 1). There will be temperature
fluctuations, but that is perfectly normal.
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Figure 1: Temperature versus time for NVT simulation. Black shows actual temperature,
red shows moving average over 5 time steps.
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3.4 NPT equilibration

Now that the temperature is equilibrated, we want to equilibrate the system pressure and
density using NPT simulation (constant Number of atoms, Pressure, and Temperature).
This allows the simulation box size to adjust. During this NPT equilibration, we again
restrain the protein position. We grompp for the NPT, but this time we use -t to use the
“checkpoint” (.cpt) file from the NVT equilibration as the initial configuration. Checkpoint
files allow simulations to be restarted using the exact positions and velocities they ended
with. This is also good practice when transferring trajectories to a simulation with different
conditions (as from NVT to NPT); .gro files have limited numerical precision, which can
cause problems. A “continuation” parameter is required in the .mdp file, which prevents
Gromacs from randomly setting the initial velocities.

gmx_d grompp -f npt.mdp -c nvt.gro -t nvt.cpt -p topol.top -o npt.tpr

We can then run the NPT simulation as a batch job on ACI-b, in the same way as for the
NVT simulation. This job will also take about 12 minutes once it has started to run.

Once the simulation has finished, we use energy to check the pressure and density fluc-
tuations:

gmx_d energy -f npt.edr -o pres.xvg

and enter 16 0 to extract only the pressure versus time. Then, extract the density versus
time into a separate file, with

gmx_d energy -f npt.edr -o density.xvg

Enter 22 0 to get the density. Plot both of these files using either Grace or xvg_reader.nb.
You should find that although the pressure is fluctuating wildly, it has stabilized on average
around 1.0 bar (Figure 2). The density should also have stabilized close to the density of
water (since the system is mainly water, and SPC/E is a good model for liquid water).
Note that the density is fairly stable (Figure 3), so we are now equilibrated with respect to
temperature, pressure, and density.

3.5 Production MD

For “production” MD, we remove all constraints on the protein, to see how the protein moves
under thermal agitation, and whether it retains its folded shape. We will run the simulation
for 1.0 ns, which should be sufficient to collect a sample set of data. We grompp our new
set of parameters, and use a continuation of the NPT equilibration we have just completed.
We name the topology run file md_0_1.tpr, where the 0_1 is meant to show the times have
simulated (e.g., we may want to restart and run from 1.0 to 2.0 ns).

gmx_d grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

Then, we will mdrun our simulation. Because of the computation requirements, we will
parallelize the job over 8 compute nodes. The batch script for this is md_0_1.pbs, which you
should submit to the queue on ACI-b. This may require a longer queue time if the cluster is
particularly busy. Your simulation should take just over an hour to complete once it starts.
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Figure 2: Pressure versus time for NPT simulation. Black shows actual pressure, red shows
moving average over 10 time steps.
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Figure 3: Density versus time for NPT simulation. Black shows actual density, red shows
moving average over 10 time steps.
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Once the simulation has finished, there are many different properties that we could
analyze. As an example, we will analyze the radius of gyration of the protein. If Rg is stable
over time, we infer that the protein has not unfolded during the simulation. First, we will
convert the output trajectory to remove the periodic boundaries with trjconv. This can be
useful for many types of analysis.

gmx_d trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol -ur compact

Then, we can use the Gromacs tool gyrate to compute Rg

gmx_d gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rg.xvg

Enter 1 to choose just the protein. Plot the data in rg.xvg. We only want the second
column, which contains the 3D Rg. The resulting plot (Figure 4) should be stable over time,
showing that the protein has not denatured.
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Figure 4: Radius of gyration versus time for lysozyme protein in SPC/E water.

3.6 Summary of grompp and mdrun options, workflow

The calculations above provide a good variety of grompp and mdrun jobs. However, it is
also useful to have a table of the different “option flags” used by these two routines. The
Gromacs manual online has a complete description of each command and its many options.
Almost all the options pertain to files that are either input to the command (i), or output
by the command (o). Some of the inputs and outputs are required, some are optional.

Here, we summarize the most important options for both commands. For the mandatory
inputs and outputs, there are default names for the files; for example, topol.top is the
default name for the topology file. Below, we give the default name for each file after the
flag, and indicate whether this is an input (i) or output (o) file; a prime (i’ or o’) indicates an
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optional file. If the mandatory option flags are omitted, or if the filename is omitted with an
optional flag, the default name is used. Supplying an output option with filename renames
the output file.

Option Default filename I/O/optional Description
-f grompp.mdp (i) MD parameter file
-p topol.top (i) topology file
-c conf.gro (i) configuration file
-t traj.trr (i’) high-precision configuration (often .cpt)
-n index.ndx (i’) index file, needed if .mdp refers to certain groups
-o topol.tpr (o) topology run file
-po mdout.mdp (o) .mdp file with all parameters

Table 1: Most common option flags for grompp.

Option Default name I/O/optional Description
-deffnm (i’) “base name” to construct all filenames

-s topol.tpr (i) topology run file
-o traj.trr (o) trajectory run file
-e ener.edr (o) energy data run file (E, P, etc. vs. time)
-g md.log (o) log file
-c confout.gro (o) final configuration

Table 2: Most common option flags for mdrun.
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4 Simulation: decane molecule

In this example, we will practice building molecules from residues which are not part of the
default set (such as the amino acids for OPLS-AA). We will define new residues for decane,
build a crude structure for the molecule, generate a topology file using pdb2gmx, and then
energy minimize it to get the correct structure for a single decane molecule.

For this example, you will need the molecular visualization / drawing software Avo-
gadro. (http://avogadro.cc).

4.1 Create new residues

We will again use the OPLS-AA force field because it represents alkanes well. On the cluster,
go to your local copy of top that you created. From top, navigate to oplsaa.ff and open
the file aminoacids.rtp. This file contains the definitions for all residues in the OPLS
force field. Each residue contains at two sections: [ atoms ] and [ bonds ]. Some more
complicated residues also contain sections for overriding dihedrals and for setting improper
dihedrals. However, we won’t worry about these sections for a simple molecule like decane.

The [ atoms ] section lists all of the atoms in a residue. It gives each one a name and a
specific OPLS atom type. A complete listing of atom types can be found in atomtypes.atp.
The [ atoms ] section also lists the partial charge on each atom, and classifies each atom
into a charge group. A charge group is (loosely) defined as the group that, when all the
partial charges are added together, combine to some integer net charge (usually zero). In a
simple alkane like decane, each charge group should be net neutral. An example of a single
charge group is a CH2 in decane, since the carbon takes a partial negative charge equal to
the sum of the hydrogen partial positive charges.

The [ bonds ] section lists which pairs of atoms are bonded to each other. You don’t
need to duplicate listings: for example, A B is equivalent to B A, and should only be listed
once. If an atom bonds to an atom in a previous residue, you put a - before the atom, and
if the atom bonds to the next residue, you put a + before the atom.

[ atoms ]

Let’s make residues for decane. We will treat decane as if it is a short piece of polyethylene.
The ethylene monomer is shown in Figure 6. We need to make separate monomers for
the “beginning” and “end” of the chain, since at these points the residue is connected to an
extra hydrogen rather than the next residue. We name each residue with a three-letter name:
PolyEthylene Beginning (PEB), PolyEthylene Middle (PEM), and PolyEthylene Terminal
(PET). (These names need to be unique, and not accidentally the name of an existing
residue.) We have named each atom in such a way that each CH2 or CH3 unit is a charge
group.

We need to classify each atom in the OPLS force field, and get the information for the
[ atoms ] section of each residue.

1. Open atomtypes.atp and look for the atoms near opls_135. These are the atom
types for an alkane.
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Figure 6: Naming schemes for polyethylene monomers

2. Classify each atom type in each of the monomers. You should need to use opls_135,
opls_136, and opls_140.

3. Open ffnonbonded.itp and find the same OPLS atoms. Record the partial charges
for each atom you classified.

Check that each charge group (there are two in each monomer) are net neutral, as we would
expect for an alkane.

Create a new text file called PE.rtp. We will work on our new residues here, and then
copy our work into aminoacids.rtp at the end. Start with the middle monomer (PEM).
The residue should look like this

[ PEM ]

[ atoms ]

C1 opls_136 -0.120 1

H11 opls_140 0.060 1

H12 opls_140 0.060 1

C2 opls_136 -0.120 2

H21 opls_140 0.060 2

H22 opls_140 0.060 2

Repeat this yourself for the PEB and PET residues.

[ bonds ]

Now, we need to list all of the bonds. Let’s start with the middle monomer (PEM) again.
The C1 atom is bonded to H11, H12, and C2, as well as to the C2 in the previous residue.
Similarly, C2 is bonded to H21, H22, and C1, as well as the C1 in the next residue. So, this
bond section should look like:

...

H22 opls_140 0.060 2

[ bonds ]

C1 -C2
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C1 H11

C1 H12

C1 C2

C2 H21

C2 H22

C1 +C1

Notice that we have not duplicated the C1-C2 bond. Repeat this exercise for PEB and PET,
and add these bond sections. After you have reviewed your work, compare your result to
the PE.rtp file included with this tutorial.

Once you are sure that your residues are correct, open aminoacids.rtp. Copy and paste
your residues onto the end of this file. Finally, these residues must be added to the file
residuetypes.dat in your ~/work/top directory, with lines

PEB Other

PEM Other

PEB Other

You have now added the polyethylene residues to the OPLS force field, and can use
pdb2gmx to create a topology from a configuration file in PDB format.

4.2 Make a PDB configuration file

Open Avogadro. We will make a crude drawing of a decane molecule, and use this as
our starting configuration. To draw the molecule, select the pencil tool, and make sure
Ball and Stick is checked in the Display Types menu. Click to form your first carbon (it
will appear as CH4, with hydrogens automatically added). then click on a hydrogen to add
another carbon. (You can also click on a carbon and drag, to form a carbon-carbon bond,
with hydrogens automatically adjusted). All-trans decane looks like a zig-zag from the side,
so do your best to draw the molecule this way.

Once you have placed ten carbon atoms, click on the blue Navigation Tool in the tool
bar. You can now drag around your screen and inspect your molecule to make sure that it
is properly bonded. At this point, use the Avogadro tool to roughly energy minimize the
structure (by clicking the E in the tool bar, then Tool Settings, and finally Start to begin
minimization).

Save your file as a PDB to decane_avogadro.pdb file format. Then, make a second copy
of this PDB file called decane.pdb. We will be modifying decane.pdb, and we don’t want
to lose our original work in case we make a mistake.

Atom renaming

Open decane.pdb in TextWrangler. Avogadro doesn’t know the atom or residue names we
have chosen to assign, so we must modify the PDB file.

First, delete all of the CONECT records and the MASTER record. These are not needed for
Gromacs. Then, replace all occurrences of HETATM with ATOM (“ATOM” followed by two
white spaces). PDB files are fixed format files: each number or keyword appears at a fixed
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position (number of characters from the start of the line). So make sure you preserve the
spacing when making modifications.

Column #2 are the atom numbers; we will number these sequentially at the very end of
our modifications, when all the atoms are in the proper order in the file. Right now, the
atom numbers correspond to the way Avogadro numbered them. But which atom is which?
To find out, open decane_avogadro.pdb in Avogadro. In Display Settings, make sure
Label is checked. Each atom should have its number on it. (If not, check the “wrench”
next to Display Settings, to make sure the label is displaying the atom number, and not
something else.)

We want the atoms to appear in the PDB file “residue by residue”, and within each
residue with all the carbons first, followed by all the hydrogens. We use the Avogadro
picture to tell us which is the first carbon from the starting end (choose whichever end as
the starting end), which hydrogens it is connected to, which is the next carbon along the
chain, and so on.

So: find the number of the first carbon on the chain. Move the line for that carbon to
the top of the PDB file; change its entry in Column #3 to C1, by replacing the space to the
right of the C with a 1. Find the number of the next carbon, and move that line just below
the first one; make this carbon a C2.

Now find the hydrogens that are bonded to this C1 and C2, and move them all just below
the line for the C2. There should be five hydrogens, since this is the beginning residue.
Change their atom names to the appropriate labels, by replacing the two spaces just after
the H with 11, 12, 13, 21, or 22 as appropriate. It doesn’t matter which H becomes which
number on a specific carbon, just so long as it is supposed to be bonded to that carbon.

Repeat this process for each subsequent pair of carbons along the chain, using the Avo-
gadro picture as a guide to identify which atom numbers you want where. For the next three
pairs, there will be four hydrogens each (since they are middle residues), and then five again
for the terminal residue.

Once you have all atoms renamed and organized into residues, you can replace the generic
residue LIG in Column #4 with the proper residue name, either PEB, PEM, or PET. Make sure
that you replace exactly the three characters in LIG to preserve the correct spacing.

Column #5 contains the residue numbers, which to start with are all 1. These should be
1, 2, 3, 4, 5 in sequence (this is where it useful to have atoms organized by residue). Finally,
correct the atom numbers in Column #2 so that they run from 1 to 32 in order. Again, be
sure to watch that the white space is preserved — the last digit should be in column 11.

To check that your PDB is correctly formatted, open the unedited decane_avogadro.pdb

in TextWrangler, copy one of its atom lines, and paste it before the first atom line in your
edited PDB file. Check that everything lines up correctly (and then make sure to delete the
added line). You can check your work against decane.pdb which is included in this tutorial.
However, note that the atom positions (columns six through eight) will be different, and the
atoms may be numbered differently if you organized them in a different way.

4.3 Prepare simulation

Create a new folder on the cluster called decane, and upload your decane.pdb as well as
the enclosed em.mdp and min script. The point of relabeling the PDB file and adding the
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residue types, was to make a topology automatically using pdb2gmx.

gmx_d pdb2gmx -f decane.pdb -o decane.pdb -p decane.top

Enter 15 for the OPLS-AA force field, and then 8 not to include any water.
We set the simulation box as a cubic box with 1.0 nm of padding to ensure we have an

isolated molecule.

gmx_d editconf -f decane.gro -o decane.gro -c -d 1.0 -bt cubic

4.4 Run minimization

To check that we have successfully created a valid topology file, we run an energy minimiza-
tion as before, with grompp and mdrun:

gmx_d grompp -f em.mdp -c decane.gro -p decane.top -o em.tpr

gmx_d mdrun -s em.tpr -deffnm decane_min -c decane_min.pdb

Alternatively, you can execute the script ./min, included with this tutorial. (Note the output
file we produce this time has extension .pdb, which we can open in Avogadro.)

After the minimization is finished, download the PDB output file decane_min.pdb and
open it in Avogadro. Under Display Settings, check Van der Waals Spheres. Do the
same for the original decane_avogadro.pdb. You should see that the new decane molecule
is more regular in structure, and that the van der Waals spheres overlap nicely (Figure 7).

Figure 7: Energy minimized structure of decane molecule.
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5 Batch job submission

During our lysozyme simulation, we submitted three batch jobs to to run on ACI-b. All
other jobs were run interactively on ACI-i; that is, we executed them ourselves at a terminal
session, and waited for output to appear on our screen. Batch jobs have several advantages
over interactive jobs. They run on dedicated processors, so you can do other work while you
wait for the job to finish. And, batch jobs can be parallelized across multiple computing
nodes, to run much faster than they would on a single processor. More memory is also
accessible to batch jobs than to a terminal session.

At Penn State, batch job submission is controlled by PBS. You submit jobs to a PBS
queue on a given cluster; PBS manages the queue. When it is your turn, PBS executes
the UNIX commands in the script you submitted, as if you were entering them yourself
interactively from the command line. Any output that would have gone to the screen, is
printed to a file you can read after the job has finished.

5.1 PBS Script

Each batch script start with commands that tell PBS about the job, including: which queue
to submit to, the maximum run time, how much memory is needed, and how many cores
(processors) are requested. Jobs with long run times or many processors requested tend to
wait in the queue longer before running because the resources must become available.

Batch scripts are text files, conventionally with file extension .pbs. The file name should
tell you something about the job; for example, md_0_1.pbs, which runs an MD simulation
from 0 to 1 nanoseconds. Use the filename wisely.

A typical batch script on ACI-b looks like this:

#PBS -A stm9_b_t_bc_default

#PBS -l nodes=1:ppn=1

#PBS -l walltime=24:00:00

#PBS -j oe

echo "Job started on ‘hostname‘ at ‘date‘"

cd $PBS_O_WORKDIR

...

echo " "

echo "Job ended at ‘date‘"

echo " "

The first line gives the queue (account, -A) to access. ACI-b is awkward in that our
resources there are artificially separated into three accounts:
stm9_a_g_sc_default, stm9_b_t_bc_default, and stm9_c_t_sc_default, with 1, 7, and
4 nodes respectively (each node with 20 cores or “processors”). Jobs that exceed the confines
of the queue can run in “burst” mode, which may wait longer in queue.

The next line tells the cluster the processors that you need. “Nodes” are collections of
processors that share common memory. Nodes on ACI-b have two CPU chips with 10 cores
each, so 20 cores per node. As a general rule, a job should have something like 5000 atoms
per core, otherwise the cores spend too much time exchanging information about atoms on
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the boundary between regions handled by neighboring cores. PBS directives that request
nodes and processors interact with corresponding options in the mdrun command, discussed
in detail below (Parallelizing).

The third line sets the “wall time” for the process — the maximum amount of time that
the job can run. If the job exceeds the wall time, it is immediately killed, so it is important
to request enough wall time for the job. However, jobs with longer wall times wait longer in
the queue. The maximum walltime for our queues is 192 hours (8 days). Long simulations
often take longer than that, so we break them up into a succession of jobs, each of which
starts up from the checkpoint file of the last job.

The fourth line combines the job screen output and error messages into a single file.
This file will be named after your script and the computer assigned job ID number, like
md_0_1.pbs.o12345. You can open this file after the job has finished running to analyze
any written output.

After this, we use echo to print the start time for the job, and change directories to
$PBS_O_WORKDIR, which is the directory where the job was submitted. (You typically
submit jobs from the directory you want them to run in; whereas by default, PBS scripts
are executed from your home directory.)

In place of the . . . , you put the actual commands you want executed, typically including
some instance of mdrun. We don’t do pdb2gmx or grompp or Gromacs analysis commands in
PBS scripts, because they don’t take enough compute time to be worth submitting to batch.

Finally, we use echo to print the end time for the job.

5.2 PBS commands

Submitting jobs

You must be logged into the same cluster that you specified in your PBS queue directive.
For ACI, that means you must be logged into ACI-b.

qsub pbs_script

Checking job status

To check the status of all jobs running on a cluster:

qstat

To check the status of the jobs that you have submitted:

qstat -u <username>

To check the status of a specific job (with job_id obtained from qstat. You only need to
use the number):

qstat -n job_id

To check what process this job is running and how much memory it is using, you can log
into the node returned by qstat -n (it will be listed as the last line, like lionxj12/2. The
node is lionxj12). Then, SSH to the node and use top to view all running tasks
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ssh node_name

top

You can quit top by pressing Ctrl+C. Remember to logout from the node when you are
done checking.

Modifying jobs

To delete a specific job (queued or running):

qdel job_id

To delete all jobs you have submitted:

qdel $(qselect -u <username>)

To alter a job after it is submitted but before it has started running:

qalter pbs_directives job_id

So, for example, to change the walltime to 24 hours on job 12345:

qalter -l walltime=24:00:00 12345

To alter all jobs (will throw an error if you have any running jobs):

qalter pbs_directives $(qselect -u <username>)

5.3 Parallelizing

There are two ways to run parallel jobs in Gromacs: multiple threads on a single node, or
multiple nodes. These use different compiled versions of Gromacs: gmx_d is for multthread-
ing, gmx_mpi is for multinode jobs. Each approach involves both a PBS request for the
compute resources (nodes and cores), and the corresponding version of the mdrun command.

To execute a multithread job (multiple cores on a single node), use

gmx_d mdrun -nt N ...

which requests N threads on a single node. Multithread jobs are only run in batch. The
batch file needs to contain a matching directive,

#PBS -l nodes=1:ppn=N

To execute a multinode job (one core on multiple nodes, communicating with OpenMPI
[Message Passing Interface]), use

mpirun -np N gmx_mpi mdrun ...

where N is the number of cores you want to use. Note the prefacing command mpirun.
Multinode jobs are only run in batch. The batch file needs to contain a matching directive,
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#PBS -l nodes=N:ppn=1

Which is better? On Lion-X, the queue was designed to keep the machine busy, and a
job that needed an entire node to run would have to wait a while for a complete node to
become idle. Whereas, the queue on ACI-b prioritizes access to our resources at the expense
of leaving cores idle. So on Lion-X, it made sense to submit jobs that requested many cores,
one per node, because nodes were not kept idle to be ready for their owners. On ACI-b, it
may make sense to do the opposite — to request 10 cores and 1 node, so as to stay within
our queue resources.

The full range of options within Gromacs for running on multiple cores and nodes are a
lot more varied and complicated than the above: see
http://manual.gromacs.org/documentation/5.1/user-guide/mdrun-performance.html.

5.4 GPU support

GPUs (Graphical Processing Units) are video cards used to do parallel calculations for
simulations. In Gromacs, GPUs can efficiently handle the parallel calculation of nonbonded
forces. Using one or more GPUs to assist the cores running the simulation, Gromacs can
be speeded up by a factor of 2–3, depending on what kind of simulation is run and what
hardware is used.

A key question is how many cores per GPU is the most “efficient” ratio. The answer
depends on the relative cost of cores and GPUs: if GPUs were free, it would make sense to
use more of them. This question is most relevant to designing and buying computers, since
a workstation or cluster node has a fixed ratio of CPUs per GPU, which limits the range of
ratios you can use.

For atomistic simulations, our group has run tests that suggest ratios of 8–12 cores per
GPU give a speedup in the range of 2.5–3 over using the same cores and no GPU. Reducing
the ratio below about 8 cores per GPU begins to have diminishing returns, as there are not
enough cores to do the rest of the simulation work, to keep the GPU “busy”.

In the simplest arrangement, one or more GPUs work with some or all of the cores on a
single CPU. Given the cost of GPU cards, the number of cores on present-day CPUs, and
our observations of speedup, our GPU-assisted workstation has dual 14-core CPUs and 2
GPUs (instead of e.g., dual 14-core CPUs and 4 GPUs, for a ratio of 7:1).

With a rough guide of 2500–5000 atoms per core for jobs with no GPUs, 12 cores is
sufficient for jobs of 30–60,000 atoms, which is the scale of most simulations our group runs.
Such jobs can then run 2.5–3 times faster on the cores of a single CPU with one GPU
assisting.

To run such jobs on our workstation, the command is

nohup gmx mdrun -nt 12 -gpu_id x ... &

where x is either 0 or 1 (the GPU ID number). Option -nt 12 requests 12 “threads”
(cores). It’s a good idea to leave 2 or more cores free on each CPU, so that the workstation
can continue to respond to interactive commands.

There is no batch queue on our workstation; compute jobs are submitted interactively
and “run in the background”. In the above command, & indicates the job is a background
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job — the system prompt returns immediately after the command is executed. The preface
command nohup (NO HangUP) keeps the job running until it completes, even after you log
out (without nohup, all background jobs are killed when you log out).

To find out the status of background jobs, use ps (Process Status); to kill running
background jobs that go awry, use kill.

Some XSEDE clusters at national supercomputer center sites have nodes with GPU
support (Bridges at the Pittsburgh Supercomputing Center is one), with a ratio similar to
our workstation. These machines use PBS; to request a single node with 12 cores and one
GPU, use

#PBS -l nodes=1:ppn=12:gpus=1

which requests resources for the Gromacs command

gmx mdrun -nt 12 -gpu_id 0 ...

5.5 Automated submission with Python

If you have a series of related jobs to submit, it can be tedious to submit them all by hand.
Commonly, you want to run a series of simulations in which some parameter is systematically
varied, for example the temperature or pressure.

Scripts can help you automate a large series of related job submissions. Basically, you
iterate over the series of jobs, create a folder for each job named in some systematic way,
modify a “template” .mdp file and .pbs batch script to create .mdp and .pbs files for each
job, and submit the entire series of batch jobs to the queue. Our research group uses a
language called Python to write such scripts. The easiest way to learn how to write such
scripts is to look at a working example.

There are two basic approaches to use a script to create a series of related .mdp and .pbs
files. One approach is to prepare “template” .mdp and .pbs files, with the parameter to be
varied replaced by some variable name. The Python script can then read in the file, replace
the variable name by a series of values, write new files for each job, and submit those files.

The other method is to include all the text of the files to be written within the Python
script, which then executes a series of echo commands to write the text to a new file. This
can make for a rather long Python script, which does not closely resemble the .mdp and .pbs
files it ultimately creates. With the “template” approach, nearly all the lines in the template
files look exactly as they do in ordinary .mdp and .pbs files.

We have included with this tutorial a pair of Python scripts write_mdp.py and write_sh.py,
and a pair of template files md.mdp and job.sh, which arise in computing the solvation free
energy (to take a solute from vacuum into solvent). In this calculation, simulations are run at
a series of values of “visibility” of the solute to the solvent, which parameter (called lambda)
appears in the .mdp file. The script write_mdp.py creates a series of .mdp files from the
template md.mdp (and three other similar templates not included); the script write_sh.py

creates a corresponding series of batch script files from the template file job.sh.
The two Python scripts are commented so you can at least see what is going on, if not

precisely why the Python commands have the form they do. To really learn to write in
Python, there are several good resources online, including (in order of complexity)
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• https://www.stavros.io/tutorials/python/

• http://www.tutorialspoint.com/python/index.htm

• http://www.diveintopython3.net

• https://docs.python.org/3/tutorial/

• http://openbookproject.net/thinkcs/python/english3e/

6 Advanced topics

In this section, we will briefly highlight some advanced features of Gromacs. More details
can be found in the Gromacs manual, online, or by asking experienced group members.

6.1 Running faster

Everyone wants their simulation to run faster. There are several ways to coax a few more
nanoseconds per day out of Gromacs.

Add processors. The same size system running on twice the number of cores will run
twice as fast, until each core is handling so few atoms that cores waste lots of time swapping
information with neighboring cores about atoms on the boundaries between domains. But
diminishing returns is a crossover, so it may be tempting to push the number of atoms per
core down from 4–5000 to closer to 1–2000. Do timing studies: see how many ns/day/core
you are getting with your system before wasting valuable resources.

Use GPUs. GPUs (Graphical Processing Units, i.e., video cards) have amazing parallel
computation capability, now being harnessed by Gromacs and other simulation codes to
handle nonbonded (Lennard-Jones) interactions. At present, the ACI cluster has no nodes
with GPU support; our group has a single-node workstation, with 2 GPUs supporting twin
CPUs with 14 cores each. The CPUs on this workstation are comparable to those on ACI
nodes, and the GPU support speeds typical jobs by factors of 2.5–3. Some national super-
computing center (XSEDE) machines also have GPU support. See above for details on how
to run Gromacs jobs on GPU nodes.

Constrain bonds. Molecular bonds are stiff and vibrate at high frequencies. It takes
a very short timestep to follow this rapid motion accurately, which for most purposes is
not interesting anyhow. In the .mdp file, you can specify that bond lengths be constrained
to be constant. The dynamics then uses a special algorithm called LINCS to satisfy the
constraints.

With constrained bond lengths, timesteps can often be boosted from the usual 1fs to
more like 2fs. To check whether your timestep is too large, check the stability of the energy
versus time in a short simulation with the thermostat turned off.

Typical parameters are

constraints = all-bonds

constraint_algorithm = lincs

lincs-iter = 1 ; a single iteration
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lincs-order = 6 ; sets accuracy

See Gromacs manual section 7.3.18 and
http://www.gromacs.org/Documentation/How-tos/Removing_fastest_degrees_of_freedom.

Note that bond lengths in water are automatically constrained (using a special algo-
rithm called SETTLE), unless water is explicitly declared flexible in the .mdp file with
define -DFLEXIBLE.

Two times when you should not constrain bond lengths are 1) minimizing the energy
(the minimizer does not work well with constraints), and 2) computing normal modes (see
below).

Virtual sites for hydrogen. A step beyond constraints is to “make H atoms virtual sites”,
i.e., to determine the position of H atoms at each timestep by applying deterministic rules
about bond lengths and angles. For molecules with .itp files built by pdb2gmx, this can be
done by calling pdb2gmx with option -vsite h.

A leading Gromacs developer (David van der Spoel) reports that his usual setup is to
use virtual site hydrogens, fixed bond lengths and LINCS, and a 4fs timestep.

Note that when boosting the timestep in this way, the parameter nstlist specifying the
steps between neighbor list rebuilds should be decreased from the usual value of around 10
to more like 5 (as the timestep is doubled from 2fs with only bond constraints, to 4fs with
vsite hydrogens), so that the elapsed time between neighbor list rebuilds is constant. See
http://www.gromacs.org/Documentation/How-tos/Speeding_Up_Simulations

Shorten the cutoff. If you’re really desperate, one way to speed up a simulation at the
expense of quantitative accuracy is to shorten the nonbonded cutoff distance, which reduces
the number of pairwise interactions computed. Decreasing the cutoff by a factor λ reduces
the number of particles within range by a factor of λ3, so reducing the cutoff from 2.5σ (a
standard recommendation for LJ interactions) to 2σ is worth a factor of 2 in speed.

Change the physical parameters. If you’re simulating a glassy fluid, things will be slow
near the glass transition; maybe you need to raise the temperature a bit. If you’re simulating
a polymer melt or concentrated solution, things will be slow if the chains are long enough
to become entangled; maybe you need to shorten the chains a bit. (If your aim is to study
glassy fluids or entangled polymers, you must think carefully about how close to Tg or how
entangled a melt you can approach.)

Simplify the model. Atomistic simulation is appealing because it represents real molecules
with chemical specificity, but some systems are too big and too slow to simulate atomistically.
There are various levels of “coarse-graining” that can be applied. For example:

1. “united-atom” models, in which hydrogens are lumped together with the atoms to
which they are bonded;

2. Martini models, in which 2–3 heavy atoms at a time are lumped together as a single
“bead”;

3. bead-spring models, in which a polymer chain is idealized as a sequence of beads
bonded by springs, with the bead representing some small polymer segment of several
monomers or more.
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6.2 Walls

Gromacs provides support for included Lennard-Jones 9-3 or 10-4 walls. A 9-3 wall is
equivalent to interacting with a semi-infinite slab of a given atom type, and can be useful
for equilibration. The 9-3 wall potential is

U = πρj
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Walls are placed along the z-axis, and you can choose to include either one or two walls. A
typical set of .mdp parameters looks like

; wall

nwall = 2 ; number of walls

wall_atomtype = opls_135 opls_135 ; atom type for each wall

wall_type = 9-3 ; choose the potential

wall_r_linpot = 0.03 ; 0.3 A

wall_density = 100 100 ; wall density (nm^-3)

The parameter wall_r_linpot lets you set a distance beyond which the potential is contin-
ued linearly (with a constant force). This forces atoms that lie beyond the wall back into
the system. It is a good idea to always include this parameter if there is a chance atoms may
be placed beyond the wall, since a fatal error will result without it. Setting the distance as
very close to the wall will have negligible effect on your simulation physics (since atoms will
almost always prefer to be farther than the vdW radius from the wall).

Sometimes you may want to simulate a wall as an interaction with many atoms. However,
you are limited to a single wall-type in Gromacs. A way to avoid this is by introducing
your own “custom” wall atoms. To do this, create a dummy name for your atom (such as
“wallatm”) and append it to atomtypes.atp and ffnonbonded.itp in your force field. For
atomtypes.atp, you can enter 0.0 for the mass column because it will not matter for a wall.
For ffnonbonded.itp, you can again add zeros to the columns. Follow the example of the
section of special dummy-type-particles in oplsaa.ff. Then, create a new file called
walls.itp in your force field. Append the following line to forcefield.itp:

#include "walls.itp"

Open walls.itp. Here, you can define the Lennard-Jones parameters for each atom type in
your system interacting with your dummy wall atom. A sample walls.itp for the OPLS-AA
force field looks like this

[nonbond_params]

; i j func sig eps
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; iPP wall @ 300 K from s.c. lattice

; wall_density = 100

ppwall opls_135 1 3.36558e-01 2.09866e-01 ; wall-CH3

ppwall opls_136 1 3.36558e-01 2.09866e-01 ; wall-CH2

ppwall opls_137 1 3.36558e-01 2.09866e-01 ; wall-CH

ppwall opls_140 1 2.84443e-01 1.41492e-01 ; wall-H

The Lennard-Jones parameters are chosen according to the following formulae
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where ρw is a free choice for the wall density. It is advisable to choose a wall density so that
the Lennard-Jones parameters are of the same order of magnitude as typical nonbonded
parameters. Remember that your wall density in your .mdp file must match the wall density
that you choose.

6.3 Chain building

We illustrated one scheme for building polymer configurations using Avogadro and topology
files using pdb2gmx, for the simple example of decane. This scheme is workable but in-
creasingly tedious for very long molecules. It is particularly painful if the system of interest
contains random copolymers, in which different chains have a different sequence of the same
types of monomers. Then each different sequence is in effect a different molecular species,
requiring its own unique topology file. An example of such a system is atactic polypropylene,
in which the methyl groups on each monomer are randomly on one side or the other of the
all-trans chain. If we want to have a sufficient variety of structures for such chains, we have
an unpleasantly large number of PDB files to generate and clean up.

In such cases, we can use Mathematica to help us build multiple PDB files in which
random choices are made between left- and right-handed monomers. The multiple PDB
files can then be processed by pdb2gmx to generate multiple topology files. The basic idea
is to create small PDB files for the monomers in your molecules, hand-edit the atom and
residue names in those PDB files. Then we “glue” the monomers together in Mathematica,
renumbering the atoms and the residues in sequence, to create large PDB files for a polymer
chain.
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First, we generate small PDB files for the monomers. One way to do this is to draw an
oligomer in Avoagdro, energy minimize it, and then delete atoms until only the monomer
you want remains. It’s helpful to retain as well the “previous” and “next” carbon atoms,
so you know how to translate the monomer positions to build an all-trans chain. Then, you
strip the PDB file to just the bare minimum information about the atoms, and carefully
reorder and rename the atoms to correspond to the residue definitions you have made.

The Mathematica notebook pdb2chain.nb has methods for assembling the chains from
monomer PDB files, and for writing out the properly formatted PDB file for the entire chain.
This notebook is pretty well documented, so you can read through it for details. Each new
monomer is translated by an appropriate vector from an arbitrarily chosen origin along a
new chain “backbone”. This builds the chain in the all trans configuration. Rotations and
alignments can then be performed on the final chain.

6.4 Self-connectivity through periodic boundary

It is sometimes desirable to bond a molecule to itself through the periodic boundary. This
effectively creates an infinitely long chain, which can be useful for studying polymer crystals
without end effects. However, pdb2gmx cannot generate topologies for these systems. The
simplest approach in such cases is to build the ordinary molecule first, use pdb2gmx to
generate its topology file, and then hand-edit the topology to remove the terminal atoms,
and include the “extra” bonds, angles, and dihedrals resulting from the connection through
the periodic boundary.

If you instead only want to build a simple ring polymer, you can still use pdb2gmx, if you
edit the file specbond.dat (Special Bonds) to construct the bond between the beginning and
the end of the chain. Documentation of specbond.dat is available on the Gromacs website.
This method does not work for linear chains self-connected through the boundary because
pdb2gmx is not aware of the periodic bonding of the molecule when it checks the tolerance
radius for building the “special” bonds.

6.5 Normal mode analysis

The phonon spectrum for a system can be computed with normal mode analysis. This is
most useful for crystalline systems, for which the set of deformations is well described by a
set of normal modes about the lowest-energy state. The total free energy of a system can
be computed analytically, in the approximation that the normal modes are not interacting
(which is true if the amplitudes of thermal oscillation are small enough). The total free
energy of a system of decoupled quantum harmonic oscillators is

F = U0 +
3N−3∑
i

h̄ωi
2

+
1

β

3N−3∑
i

ln
(
1 − e−βh̄ωi

)
(12)

where U0 is the simulated potential energy, and ωi are the phonon frequencies. The sums are
taken over all non-zero normal modes. There should 3 zero modes for a system with periodic
boundaries in all directions and no walls, since there are modes of motion (bulk translation
in x, y, z) that result in no change for the system.
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For a normal mode analysis, thorough energy minimization (force tolerance much less
than 1 in Gromacs units) is required. Typically, a force tolerance between 10−4 and 10−2 is
sufficient, although this will depend on your system. Minimization should be done using the
L-BFGS minimizer. If machine precision is reached before the force tolerance is met, you
may need to perturb the structure and try minimizing again, since machine precision is not
sufficient to guarantee you are close enough to the energy minimum. Then, modify the .mdp

file to use the nm integrator. This will construct a Hessian matrix for you in .mtx format.
Then, use g_nmeig to diagonalize the matrix, and obtain the eigenvalues.

Memory usage for the matrix construction and diagonalization scales very unfavorably,
so a limit of about 7,000-8,000 atoms is all that is practical for this type of analysis.

6.6 Center-of-mass pulling

You can use Gromacs to “pull” on certain groups of atoms. This can be useful for umbrella
sampling, for example. Another potential that can be applied is constant force pulling. You
use the .ndx file (most easily written in Mathematica) to define two or more pull groups.
Then, you use the .mdp file to specify the pull potential, the dimensions for pulling, and how
hard to pull. Numerous options are available, and are documented in the Gromacs manual
and (better) documented on Justin Lemkul’s website. Here is an example .mdp file for 1D
constant force pulling.

; pull code

pull = constant_force

pull_geometry = distance

pull_dim = N N Y

pull_ngroups = 1

pull_group0 = Cleft

pull_group1 = Cright

pull_k1 = -1500; MINUS the force you want
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